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Abstract

Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular

pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose

homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at

mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2–T1R3, in association

with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number

of studies have demonstrated that activation of T1R2–T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like

peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2

increases intestinal growth and glucose absorption. T1R1–T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK)

expressing cells is a luminal sensor for a number of L-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article

focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and L-amino acid sensing. The impact of exploiting T1R2–T1R3

as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighted.
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G-protein-coupled receptors (GPCR) represent the largest

family of cell-surface mediators of signal transduction(1).

GPCR have attracted significant attention in terms of continued

identification and characterisation, with recognition that they

are targets for novel drug discovery. With more recent evidence

demonstrating that nutrient sensing in the gastrointestinal tract

is accomplished by a number of GPCR(2), the role of these

receptors as important nutritional targets is becoming evident.

Nutrient-sensing GPCR for a variety of nutrients have been

identified in the intestinal epithelium. They are expressed on

the apical domain of enteroendocrine (sensor) cells of the

gut and are directly activated by nutrients(3–9). Nutrient

sensing initiates a cascade of events involving hormonal and

neural pathways. This culminates in functional responses that

ultimately regulate vital processes such as nutrient digestion

and absorption, food intake, insulin secretion and metabolism.

This brief article focuses on the role of the taste receptor 1

family of GPCR, T1R1, T1R2, and T1R3, in sweet and L-amino

acid sensing, with particular focus on its role in glucose

absorption, glucose homeostasis and satiety. Moreover, the

impact of exploiting the T1R2–T1R3 heterodimer as a

nutritional target for enhancing intestinal glucose (salt and

water) absorption and gut structural maturity in young animals

is highlighted.

Sweet and L-amino acid sensing in the lingual epithelium

The T1R family present in the taste cells of the lingual epithelium

consists of three members: T1R1; T1R2; T1R3(10,11). These

receptors are distantly related to metabotropic glutamate

receptors (mGluR), extracellular Ca2þ-sensing receptor (CaSR)

and g-aminobutyric acid type B receptor(10). Based on electro-

physiological studies, heterologous expression of taste receptor

subunits and behavioural assays of knockout mice, the

heterodimeric combination of T1R2–T1R3 has been shown to

function as a broad-specificity sweet sensor for natural sugars,

sweet proteins and artificial sweeteners, whereas the combi-

nation of T1R1–T1R3 has been identified as a broad-spectrum
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L-amino acid sensor, responsible for mediating the perception

of the savoury ‘umami’ taste of monosodium glutamate(11,12).

Both the T1R2–T1R3 and T1R1–T1R3 heterodimers are

coupled to the heterotrimeric G-protein gustducin to transmit

intracellular signals(13).

In rodents and many other mammalian species, the lingual

epithelium T1R1–T1R3 heterodimer responds to most of the

twenty standard L-amino acids in the millimolar range(12).

However, the T1R1–T1R3 heterodimer is not activated by

L-tryptophan (TRP)(12). The human T1R1–T1R3 complex

functions as a much more specific receptor, responding

selectively to monosodium glutamate (GLUT) and aspartate

(as well as to the GLUT analogue L-AP4)(10,11). A salient feature

of amino acid taste in animals and umami taste in humans is the

synergistic enhancement of potency when GLUTor other amino

acids combinewith themonophosphate esters of inosineor gua-

nosine nucleotides (IMP and GMP)(14–16). Both GLUT and IMP/

GMP bind to adjacent domains on the N-terminal Venus flytrap

module of T1R1(17), while potentiation of intracellular signal

transmission by IMP is mediated through a-gustducin(18).

Gurmarin, a thirty-five-residue polypeptide from the Indian-

originated tree Gymnema sylvestre (Gurmar), can inhibit both

sweet and L-amino acid sensing by binding to the Venus flytrap

domain of T1R3, inhibiting its function(19–24).

Intestinal sweet sensing

Work carried out in many laboratories has demonstrated that

T1R family members and gustducin are co-expressed in enter-

oendocrine cells in a range of species(5,7,24–33), suggesting that

taste-sensing mechanisms exist in the gastrointestinal tract.

It is well established that enteroendocrine L and K cells

secrete glucagon-like peptides (GLP) (1 and 2) and glucose-

dependent insulinotropic peptide (GIP), respectively, on

encountering glucose in the intestinal lumen. GLP-1 and GIP,

known as incretins, enhance insulin secretion, while GLP-2

increases intestinal growth and glucose absorption(34–36). The

infusion of intestinal lumen with the D-isoforms of glucose,

galactose and fructose and non-metabolisable analogues of

glucose, 3-O-methyl-glucose and a-methyl-glucose, causes

the secretion of GIP and GLP-1 in rats, pigs and

humans(37–39). Furthermore, it has been shown that the

T1R2–T1R3 heterodimer together with the a-subunit of

gustducin resides in K and L endocrine cells containing GIP,

GLP-1 and GLP-2, respectively(7,8,30,33).

Functional evidence for the role of the T1R2–T1R3 hetero-

dimer in intestinal glucose (sweet) sensing, inducing GLP-1,

GLP-2 and GIP release, has been provided using endocrine

cell lines, native intestinal tissue explants and knockout mice

deficient in a-gustducin or T1R3(7,24,32,33). The murine

endocrine cell line GLUTag exhibits markedly increased

GLP-1 secretion upon exposure to the artificial sweetener

sucralose; this secretion is blocked by gurmarin, indicating

that sucralose-induced GLP-1 release occurs through the acti-

vation of the T1R2–T1R3 heterodimer(7). Similar results were

obtained for sucralose-induced GLP-1 release in the human L

endocrine cell line NCI-H716, which was blocked either by

RNA interference targeting of a-gustducin or by the human

sweet taste receptor antagonist lactisole(5). Furthermore, the

plasma levels of GLP-1 and GIP following the introduction of

glucose directly into the proximal intestine are reduced in a-

gustducin or T1R3 knockout mice, compared with wild-type

controls(40). Moreover, these knockout mice have abnormal

insulin profile and prolonged postprandial blood glucose

responses in response to luminal glucose(40). Further work car-

ried out by Geraedts et al.(32) has shown that luminal glucose,

fructose or sucralose evoke release of GLP-1 from mouse ileal

explants embedded in an Ussing chamber, and that secretion

of GLP-1 does not occur in tissue explants from T1R3 knockout

mice(32). Moreover, exposure off mouse intestinal explants to

either glucose or sucralose results in the secretion of GLP-1

and GLP-2, in a dose-dependent manner, and that this secretion

is inhibited in the presence of gurmarin, a specific inhibitor of

T1R3(33) (Fig. 1). Notably, the levels of GLP-1 and GLP-2

released by control and glucose-stimulated tissues were similar

to those observed in in vivo studies in rats and human subjects

given glucose orally or maintained as controls(41,42),

supporting the suitability of intestinal tissue explants for such

studies. In these assays, the endocrine cells reside in their

native niche, and it appears that maintaining contacts with

neighbouring cells is important for endocrine cells to retain

their functional viability(43). Collectively, the data suggest that

the sensing of sugars by the T1R2–T1R3 heterodimer coupled

to gustducin expressed in L and K endocrine cells leads to the

release of GLP-1, GLP-2 and GIP.

However, there are reports indicating that sweeteners do

not trigger the release of incretins. Parker et al.(44) have

reported that primary cultures of adult mouse intestine do

not secrete GIP in response to sucralose. This is not surprising,

since they have indicated that these isolated cells do not

express the T1R2–T1R3 heterodimer(44). There are also

reports that oral ingestion or intragastric infusion of artificial

sweeteners does not increase the secretion of incretins in

rats(45) or humans(46). By feeding rats a single concentration

of sweeteners (50 mg or 1 g/kg body weight, depending on

the sweetener), Fujita et al.(45) have concluded that sweeteners

do not acutely induce the release of incretin hormones. Ma

et al.(46) have also reported that 0·4 or 4 mM-sucralose given

by intragastric infusion does not induce the secretion of

incretins. Interestingly, lactisole, which inhibits T1R3 function,

reduces the blood levels of GLP-1 in humans receiving an

intragastric glucose load(47).

Many artificial sweeteners are partly absorbed in the

stomach and subsequently secreted in the urine(48). Therefore,

the lack of response observed by these workers may be due to

the concentration of the sweeteners being below the threshold

level required for activating the candidate receptor and/or the

lack of availability of the sweetener at the distinct target region

of the intestine. Further work is required to unravel these

controversies.

The majority of membrane-bound proteins, including

GPCR, are low-abundance proteins(49–53). In our experience

more sensitive SYBR green assay rather than TaqMan-based

assay and/or increased amounts of template complementary

DNA (up to 250 ng/reaction) are effective in detecting the

expression of T1R family members, having low abundance
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mRNA. This is perhaps why one or two laboratories have

failed to detect the expression of T1R1, T1R2, T1R3 and

gustducin in purified primary enteroendocrine cells using

quantitative PCR(44,54,55). Other factors, such as the prevailing

cell isolation conditions or the small proportion of purified

L or K cells expressing taste receptor subunits and gustducin,

have also been proposed to be responsible for the lack of

detection of taste receptor elements in purified L and K

cells(56).

There are some reports proposing that T1R subunits are

expressed in the colon; however, their precise functions require

further investigations. Iwatsuki et al.(57) have demonstrated the

expression of T1R2–LacZ in mouse small and large intestinal

tissues. Geraedts et al.(32) have reported glucose-stimulated

GLP-1 secretion from Ussing chamber-embedded large

intestinal explants of T1R3, but not T1R2, knockout mice.

They have concluded that T1R3-dependent and independent

pathways are involved in the regulation of GLP-1 secretion in

the colon(32).

It should be borne in mind that L cells in the small and large

intestines may have different phenotypes. Furthermore, in

the lumen of the native colonic tissue, there is hardly any

free glucose available. Glucose is rapidly metabolised to

SCFA by colonic microbiota. SCFA induce the release of

GLP-1 via colonic endocrine L-cell GPR43 (FFAR2)(58). There-

fore, studies directed at the sensing of nutrients in the hindgut

must always consider the digestive activity of the microbiota.

Mechanisms underlying intestinal sweet sensing and
glucose transport regulation: application to the
maintenance of gut health in weaning piglets

The major route for the absorption of dietary glucose (and

galactose) from the lumen of the intestine into enterocytes is

via the apical membrane Naþ/glucose cotransporter-1

(SGLT1)(59–62). The absorption of glucose by SGLT1 also

activates salt (NaCl) and water absorption; this is used as the

route for oral rehydration therapy(63). Thus, the regulation of

SGLT1 is essential for the provision of glucose to the body

and avoidance of intestinal malabsorption. A number of

studies(60,61,64 –67) have established that the expression of

intestinal SGLT1 is enhanced in response to a range of monosac-

charides, including non-metabolisable analogues of glucose.

Furthermore, it has been shown that the pathway underlying

monosaccharide-enhanced SGLT1 expression involves a

luminal membrane GPCR glucose sensor(66).

Convincing evidence for the involvement of gut-expressed

T1R2–T1R3 heterodimer and gustducin in intestinal sweet

transduction and SGLT1 regulation has been provided by

studies using mice in which the genes for either a-gustducin

or the sweet receptor subunit, T1R3, had been deleted. The

elimination of sweet transduction in mice in vivo has been

shown to prevent the dietary monosaccharide-induced up-

regulation of SGLT1 expression that is observed in wild-type

mice(7). Furthermore, it has been demonstrated that artificial
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Fig. 1. Glucagon-like peptide (GLP)-1 and GLP-2 secretion, from mouse small intestine in response to glucose or sucralose. Mouse small-intestinal tissue

explants were incubated for 1 h at 378C in incubation media supplemented with: 10 % (w/v) glucose or untreated (controls), in the absence ( ) or presence ( ) of

5mg/ml gurmarin ((a) and (b)); the indicated concentrations of sucralose or untreated (control) in the absence ( ) or presence ( ) of 5mg/ml gurmarin ((c) and (d)).

Data are means, with standard errors represented by vertical bars. Mean value was significantly different from that of the untreated control in the absence of

gurmarin: *P,0·05, **P,0·01, ***P,0·001. † Mean value was significantly different from that for glucose supplementation in the absence of gurmarin

(P,0·05). Mean value was significantly different from that for sucralose supplementation at the same concentration in the absence of gurmarin: ‡P,0·05,

‡‡P,0·01, ‡‡‡P,0·001. Reprinted with permission from Daly et al.(33).
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sweeteners when included in the diet also enhance the

expression of SGLT1(7). In cats (Felidae family) and chickens,

naturally occurring ‘T1R2 knockout’ models, there is a good

correlation between the absence of T1R2 expression and the

inability to increase SGLT1 expression in response to

increased dietary sugars(30,68,69). All together, the data support

the notion that the T1R2–T1R3 heterodimer, in association

with gustducin, senses dietary sugars to regulate the

expression of intestinal SGLT1(7).

To unravel the underlying mechanism by which sugar

activation by the T1R2–T1R3 heterodimer, expressed on the

apical domain of endocrine cells, leads to the up-regulation of

SGLT1 expression in neighbouring enterocytes, the underlying

chemosensing mechanism has been investigated. It is well

established that systemic infusion of GLP-2 enhances

intestinal growth and SGLT1 expression(35,36,70 –72). Moreover,

it has been demonstrated that in vivo vascular infusion of

GLP-2 increases, with a similar magnitude, the maximal rate of

Naþ-dependent glucose transport, Naþ-dependent phlorizin

binding and SGLT1 protein abundance in the intestinal brush

border membrane. This GLP-2 effect was inhibited by brefeldin

A(72), an inhibitor of protein translocation from the trans-Golgi

apparatus to the plasma membrane(73–75), suggesting that

GLP-2, increases the number if SGLT1 protein molecules in

the brush border membrane(72).

As shown in Fig. 1, the exposure of mouse small intestinal

explants to glucose or sucralose evokes the secretion of

GLP-2, in a dose-dependent manner, which is inhibited in

the presence of gurmarin, indicating that glucose/sucralose-

induced GLP-2 release occurs via the activation of the

T1R2–T1R3 heterodimer. Since the GLP-2 receptor is

expressed in enteric neurons(76), and not in absorptive enter-

ocytes, a direct paracrine effect of GLP-2 on the neighbouring

enterocytes is excluded. The knowledge that direct adminis-

tration of GLP-2 to enteric neurons induces a neuronal

response(76,77) and that electric stimulation of enteric neurons

results in the up-regulation of SGLT1 expression, which is

inhibited by nerve blocking agents (our own observation),

implies that the binding of GLP-2 to its receptor in enteric

neurons stimulates a reflex response that results in increased

functional expression of SGLT1 in absorptive enterocytes.

Impact

With an intensive livestock production, a shorter suckling

period increases productivity in terms of numbers of piglets

born. However, early weaning has adverse effects on the

intestinal function of piglets, leading to nutrient malab-

sorption, diarrhoea, malnutrition and dehydration(78–80). A

number of field trials (involving more than 4500 piglets)

have shown that artificial sweeteners, included in piglet

feed, are effective in preventing post-weaning intestinal

disorders, enhancing the growth and well-being of early-

weaned piglets(81). It is notable that despite the increased

palatability of feed containing artificial sweeteners, no steady

increase in feed intake has been observed. However, a

consistent enhancement of feed conversion efficiency (i.e. kg

body mass gained per kg feed intake) has been observed, and

the reason for this, until recently, was unknown. The

understanding of the molecular basis by which artificial

sweeteners enhance gut structural maturity and increase intes-

tinal glucose (salt and water) absorption has led to an effective

utilisation of sweeteners as dietary supplements, routinely

included in the diet of early-weaned piglets to prevent post-

weaning intestinal disorders.

Intestinal sensing of L-amino acids

Protein hydrolysates, peptides and amino acids elicit the

secretion of cholecystokinin (CCK) both in vivo and

in vitro (82–91). CCK plays a variety of roles in digestive

processes, such as slowing of gastric emptying, mediation of

intestinal motility and stimulation of pancreatic and gall

bladder secretions(92–95). It also inhibits food intake in a

manner consistent with a role in satiety(96). Amino acids, in

particular L-phenylalanine (PHE), at physiological concen-

trations (10–50 mmol/l)(97,98) increase plasma CCK levels

and reduce food intake in humans, monkeys, dogs and

rodents(99–102). Leucine (LEU), a branched-chain amino acid,

induces the release of CCK in cats(103).

T1R1 and T1R3 are expressed in mouse intestinal

tissue(24,26,31) and in mouse enteroendocrine STC-1 cells(24).

Immunohistochemistry, using triple immunolabelling, has

demonstrated co-expression of T1R1, T1R3 and CCK in the

same endocrine cell in the mouse proximal intestine(24).

Furthermore, confocal microscopy has shown the expression

of T1R1/T1R3 to be confined to the apical region, with CCK

residing at the basal domain of the same endocrine cells.

Immunohistochemical localisation, using double immuno-

labelling, of mouse proximal intestinal serial sections has

confirmed that T1R1 is not expressed by S, K or L endocrine

cells and that T1R1 expression is confined to CCK-containing

I cells(24). The endocrine cells containing CCK also possess

T1R1, T1R3 and a-gustducin(24).

Functional evidence for the role of the T1R1–T1R3

heterodimer in intestinal L-amino acid sensing and eliciting

CCK release has been provided by using the STC-1 cell line

and mouse proximal intestinal explants. The exposure of

STC-1 cells to the individual L-amino acids PHE, TRP, LEU

and GLUT provokes the secretion of CCK(24). In contrast, the

D-isoforms of these amino acids have no effect, providing

supportive evidence for the specific effect of L-isoforms on

the induction of CCK secretion. Furthermore, the inhibition

of T1R1 expression in STC-1 cells by RNA interference leads

to a significant decrease in CCK secretion in response to

PHE, LEU and GLUT, but not to TRP(24). TRP is a high potency

activator of CaSR(104), but inactive for the T1R1–T1R3

heterodimer(12). IMP, the specific potentiator of the

T1R1–T1R3 heterodimer, significantly enhances the release

of CCK by STC-1 cells in response to PHE, LEU and GLUT,

but not to TRP. Moreover, pre-incubation of STC-1 cells with

gurmarin inhibits the secretion of CCK significantly in

response to PHE, LEU and GLUT, but has no effect on TRP-

induced CCK release(24), collectively indicating that the

T1R1–T1R3 heterodimer functions as a sensor for PHE-,

LEU- and GLUT-induced CCK release in STC-1 cells.
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Mouse proximal intestinal explants secrete CCK in response

to PHE, LEU and GLUT and this secretion is enhanced by the

addition of IMP. However, IMP has no effect on TRP-induced

CCK secretion. Moreover, the release of CCK in response to

PHE, LEU and GLUT, but not to TRP, is inhibited dramatically

by pre-incubation of the tissue with gurmarin(24). Therefore,

the functional properties and cellular location of gut-

expressed T1R1–T1R3 heterodimer support its role as a

luminal sensor for L-amino acid-induced CCK secretion in

mouse proximal intestine.

Using isolated and purified mouse mucosal enhanced green

fluorescent protein-expressing CCK cells, Wang et al.(105) and

Liou et al.(106) have shown that aromatic amino acids L-PHE

and L-TRP stimulate the release of CCK through CaSR(105,106).

We have shown that the addition of a CaSR antagonist,

NPS2143, inhibits PHE-stimulated CCK release partially and

TRP-induced CCK secretion totally in mouse proximal intestinal

tissue explants, with no effect on LEU- or GLUT-induced

CCK secretion (see Fig. 2). The partial and total inhibition of

CaSR-mediated PHE- and TRP-induced CCK secretion is

consistent with data presented by Wang et al.(105), using purified

CCK–enhanced green fluorescent protein cells in the presence

and absence of another CaSR antagonist, Calhex 231(105).

Therefore, it appears that both receptors T1R1–T1R3 and

CaSR are capable of sensing L-PHE. Interestingly, in support

of this, the addition of NPS2143 together with gurmarin totally

inhibits PHE-induced CCK release from mouse proximal intes-

tinal tissue(24) (see Fig. 2). The experimental data suggest that

CaSR acts as an intestinal amino acid receptor specifically

sensing L-aromatic amino acids, while the T1R1–T1R3 hetero-

dimer responds to a number of amino acids provoking CCK

secretion.

Nutrient sensing GPCR are attractive and orally accessible

targets for manipulations by functional foods and supple-

ments. This has applications for maintaining health and

preventing disease.
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in Hank’s Balanced Salt Solution (HBSS) (containing 1·26 mM-Ca2þ)–20 mM-

HEPES (pH 7·4) supplemented with L-amino acids or were untreated, in the

absence ( ) or presence of 25mM-NPS2143 ( ) or 25mM-NPS2143 þ 30

mg/ml gurmarin ( ). CCK release is shown as a percentage of that in untreated

control tissue. C, untreated; PHE, phenylalanine (20 mmol/l); LEU, leucine

(20 mmol/l); GLUT, glutamate (20 mmol/l); TRP, tryptophan (20 mmol/l). Data

are means, with standard errors represented by vertical bars. Mean value was

significantly different from that of the corresponding control (C): *P,0·05,

**P,0·01, ***P,0·001. Mean value was significantly different from that for the

same test agent in the absence of NPS2143 and/or gurmarin: †P,0·05,

††P,0·01. Reprinted with permission from Daly et al.(24).
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