# Chapter 23

# The Evolution of Populations

PowerPoint® Lecture Presentations for

Biology

**Eighth Edition Neil Campbell and Jane Reece** 

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

## **Overview: The Smallest Unit of Evolution**

- Natural selection acts on individuals, but only populations evolve.
- Genetic variations in populations contribute to evolution.
- Microevolution is a change in allele frequencies in a population over generations.
- Two processes, mutation and sexual reproduction, produce the variation in gene pools that contributes to differences among individuals.

#### **Genetic Variation**





Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- Population geneticists measure polymorphisms in a population by determining the amount of heterozygosity at the gene and molecular levels.
- Average heterozygosity measures the average percent of loci that are heterozygous in a population.
- Most species exhibit geographic variation, differences between gene pools of separate populations or population subgroups.
- Some examples of geographic variation occur as a cline, which is a graded change in a trait along a geographic axis.





## **Mutation**

- Mutations are changes in the nucleotide sequence of DNA.
- Mutations cause new genes and alleles to arise.
- Only mutations in cells that produce gametes can be passed to offspring.
- A point mutation is a change in one base in a gene.

- The effects of point mutations can vary:
  - Mutations in noncoding regions of DNA are often harmless.
  - Mutations in a gene might not affect protein production because of redundancy in the genetic code.
  - Mutations that result in a change in protein production are often harmful.
  - Mutations that result in a change in protein production can sometimes increase the fitness of the organism in its environment.

# Mutations That Alter Gene / Chromosome Number or Sequence

- Chromosomal mutations that delete, disrupt, or rearrange many loci are typically harmful.
- Mutation rates are low in animals and plants.
- Mutations rates are often lower in prokaryotes and higher in viruses.

# **Sexual Reproduction**

- Sexual reproduction can shuffle existing alleles into new combinations.
- In organisms that reproduce sexually, recombination of alleles is more important than mutation in producing the genetic differences that make adaptation possible.

# Hardy-Weinberg equation tests whether a sexually reproducing population is evolving

- A population is a localized group of individuals (a species in an area) capable of interbreeding and producing fertile offspring.
- A gene pool consists of all the alleles for all loci in a population.
- A locus is fixed if all individuals in a population are homozygous for the same allele.

# **Hardy-Weinberg equations**

- The frequency of an allele in a population can be calculated.
- If there are 2 alleles at a locus, p and q are used to represent their frequencies.
- The frequency of all alleles in a population will add up to 1:

$$p + q = 1$$

# The Hardy-Weinberg Principle: a Population

- The Hardy-Weinberg principle describes an ideal population that is not evolving.
- The closer a population is to the criteria of the Hardy-Weinberg principle, the more stable the population is likely to be.
- Calculating Genotype Frequencies

$$p^2 + 2pq + q^2 = 1$$

where  $p^2$  and  $q^2$  represent the frequencies of the homozygous genotypes and 2pq represents the frequency of the heterozygous genotype.

# Hardy-Weinberg Ideal Conditions

- The five conditions for nonevolving populations are rarely met in nature:
  - No mutations
  - Random mating
  - No natural selection
  - Extremely large population
  - No gene flow

# Applying the Hardy-Weinberg Principle

- We can assume the locus that causes phenylketonuria (PKU) is in Hardy-Weinberg equilibrium given that:
  - The PKU gene mutation rate is low
  - Mate selection is random with respect to whether or not an individual is a carrier for the PKU allele
  - Natural selection can only act on rare homozygous individuals who do not follow dietary restrictions
  - The population is large
  - Migration has no effect as many other populations have similar allele frequencies

The occurrence of PKU is 1 per 10,000 births

$$q^2 = 0.0001$$

$$q = 0.01$$

The frequency of normal alleles is

$$- p = 1 - q = 1 - 0.01 = 0.99$$

- The frequency of heterozygotes / carriers is
  - $-2pq = 2 \times 0.99 \times 0.01 = 0.0198$
  - or approximately 2% of the U.S. population.

# Concept 23.3: Natural selection, genetic drift, and gene flow can alter allele frequencies in a population

- Three major factors alter allele frequencies and bring about most evolutionary change:
  - Natural selection nonrandom
  - Genetic drift random
  - Gene flow random

#### **Natural Selection and Genetic Drift**

- Natural Selection: Differential success in reproduction results in certain alleles being passed to the next generation in greater proportions by the more fit individuals.
- Genetic drift: describes how allele frequencies fluctuate randomly from one generation to the next.
- The smaller a sample, the greater the chance of deviation from a predicted result.
- Genetic drift tends to reduce genetic variation through losses of alleles.

## **Genetic Drift**



## Genetic Drift: The Founder Effect

- The founder effect occurs when a few individuals become isolated from a larger population.
- Allele frequencies in the small founder population can be different from those in the larger parent population.

## Genetic Drift: The Bottleneck Effect

- The bottleneck effect is a sudden reduction in population size due to a change in the environment, such as a natural disaster.
- The resulting gene pool may no longer be reflective of the original population's gene pool.
- If the population remains small, it may be further affected by genetic drift.

#### **Genetic Drift: The BottleNeck Effect**



Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

# Effects of Genetic Drift: A Summary

- 1. Genetic drift is significant in small populations.
- 2. Genetic drift causes allele frequencies to change at random.
- 3. Genetic drift can lead to a loss of genetic variation within populations.
- 4. Genetic drift can cause harmful alleles to become fixed.

# Gene Flow: Immigration & Emmigration

- Gene flow consists of the movement of alleles among populations.
- Alleles can be transferred through the movement of fertile individuals or gametes (for example, pollen).
- Gene flow tends to reduce differences between populations over time.
- Gene flow is more likely than mutation to alter allele frequencies directly.

#### **Gene Flow**



# Concept 23.4: Natural selection is the only mechanism that consistently causes adaptive evolution

- Only natural selection consistently results in adaptive evolution.
- Natural selection brings about adaptive evolution by acting on an organism's phenotype.

#### Natural Selection: Relative Fitness

- The natural selection phrases "struggle for existence" and "survival of the fittest" are misleading as they imply direct competition among individuals.
- Reproductive success is generally more subtle and depends on many factors.
- Relative fitness is the contribution an individual makes to the gene pool of the next generation, relative to the contributions of other individuals.
- Selection favors certain genotypes by acting on the phenotypes of certain organisms.

# Directional, Disruptive, and Stabilizing Selection

- Three modes of natural selection:
  - Directional selection favors individuals at one end of the phenotypic range.
  - Disruptive selection favors individuals at both extremes of the phenotypic range.
  - Stabilizing selection favors intermediate
    variants and acts against extreme phenotypes.

## **Natural Selection**



# The Key Role of Natural Selection in Adaptive Evolution

- Natural selection increases the frequencies of alleles that enhance survival and reproduction.
- Adaptive evolution = the match between an organism and its environment.

# Natural Selection - Adaptive Evolution



(a) Color-changing ability in cuttlefish



(b) Movable jaw bones in snakes

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- Because environments change, adaptive evolution is a continuous process.
- Genetic drift and gene flow are random and so do not consistently lead to adaptive evolution as they can increase or decrease the match between an organism and its environment.

#### **Sexual Selection**

- Sexual selection is natural selection for mating success.
- It can result in sexual dimorphism, marked differences between the sexes in secondary sexual characteristics.
- Male showiness due to mate choice can increase a male's chances of attracting a female, while decreasing his chances of survival.

#### **Sexual Selection**



Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- How do female preferences evolve?
- The good genes hypothesis suggests that if a trait is related to male health, both the male trait and female preference for that trait should be selected for.

#### The Preservation of Genetic Variation

- Various mechanisms help to preserve genetic variation in a population:
- Diploidy maintains genetic variation in the form of hidden recessive alleles.
- Heterozygote advantage occurs when heterozygotes have a higher fitness than do both homozygotes. Natural selection will tend to maintain two or more alleles at that locus.
- The sickle-cell allele causes mutations in hemoglobin but also confers malaria resistance.



# **Frequency-Dependent Selection**

- In frequency-dependent selection, the fitness of a phenotype declines if it becomes too common in the population.
- Selection favors whichever phenotype is less common in a population.



#### Neutral Variation

- Neutral variation is genetic variation that appears to confer no selective advantage or disadvantage.
- For example,
  - Variation in noncoding regions of DNA
  - Variation in proteins that have little effect on protein function or reproductive fitness.

# Why Natural Selection Cannot Fashion Perfect Organisms

- 1. Selection can act only on existing variations.
- 2. Evolution is limited by historical constraints.
- 3. Adaptations are often compromises.
- 4. Chance, natural selection, and the environment interact.

#### You should now be able to:

- 1. Explain why the majority of point mutations are harmless.
- 2. Explain how sexual recombination generates genetic variability.
- 3. Define the terms population, species, gene pool, relative fitness, and neutral variation.
- 4. List the five conditions of Hardy-Weinberg equilibrium.

- 5. Apply the Hardy-Weinberg equation to a population genetics problem.
- Explain why natural selection is the only mechanism that consistently produces adaptive change.
- 7. Explain the role of population size in genetic drift.

- 8. Distinguish among the following sets of terms: directional, disruptive, and stabilizing selection; intrasexual and intersexual selection.
- 9. List four reasons why natural selection cannot produce perfect organisms.