Chapter 24

The Origin of Species

PowerPoint® Lecture Presentations for

Biology

Eighth Edition Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

- Speciation, the origin of new species, is at the focal point of Darwin's evolutionary theory.
- Evolutionary theory must explain how new species originate and how populations evolve.
- Microevolution consists of adaptations that evolve within a population, confined to one gene pool.
- Macroevolution refers to evolutionary change above the species level.

In the Galápagos Islands Darwin discovered plants and animals found nowhere else on Earth

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

The Biological Species Concept emphasizes reproductive isolation

- Biologists compare morphology, physiology, biochemistry, and DNA sequences when grouping organisms.
- The biological species concept states that a species is a group of populations whose members have the potential to interbreed in nature and produce viable, fertile offspring; they do not breed successfully with other populations.

(a) Similarity between different species

(b) Diversity within a species

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Gene Flow Between Populations

EXPERIMENT

▼ Example of a gene tree for population pair A-B

RESULTS

Pair of populations with detected gene flow	Estimated minimum number of gene flow events to account for genetic patterns	Distance between populations (km)
A-B	5	340
K-L	3	720
A-C	2–3	1,390
B-C	2	1,190
F-G	2	760
G-I	2	1,110
C-E	1–2	1,310

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Reproductive Isolation = Barriers to Interbreeding

- Reproductive isolation is the existence of biological factors (barriers) that impede two different species from producing viable, fertile offspring.
- Hybrids are the offspring of crosses between different species.
- Reproductive isolation can be classified by whether factors act before or after fertilization.

Reproductive Barriers Between Species

- Prezygotic barriers block fertilization from occurring by:
 - Impeding different species from attempting to mate.
 - Preventing the successful completion of mating.
 - Hindering fertilization if mating is successful.

Prezygotic barriers maintain reproductive isolation and include:

Temporal, Habitat, Behavioral, Mechanical, and Gamete Isolation.

Reproductive Barriers Between Species

PreZygotic Reproductive Barriers

 Habitat isolation: Two species encounter each other rarely, or not at all, because they occupy different habitats, even though not isolated by physical barriers.

Habitat Isolation

Water-dwelling *Thamnophis*

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Habitat Isolation

Terrestrial *Thamnophis*

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

PreZygotic Reproductive Barriers

- Temporal Isolation: Species that breed at different times of the day, different seasons, or different years cannot mix their gametes.
- Behavioral isolation: Courtship rituals and other behaviors unique to a species are effective barriers.
- Mechanical isolation: Morphological differences can prevent successful mating.
- Gametic isolation: Sperm of one species may not be able to fertilize eggs of another species.

Behavioral Isolation Occurs Without Appropriate Mating Rituals

Courtship ritual of blue-footed boobies

Mechanical Isolation:

Bradybaena with shells spiraling in opposite directions

PostZygotic Reproductive Barriers

- Postzygotic barriers prevent the hybrid zygote from developing into a viable, fertile adult:
 - Reduced hybrid viability -- weak offspring
 - Reduced hybrid fertility -- sterile offspring
 - Hybrid breakdown.

PostZygotic Reproductive Barrier

Mule: sterile hybrid offspring between horse and donkey

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Other Definitions of Species

- The biological species concept cannot be applied to fossils or asexual organisms (including all prokaryotes).
- Other species concepts emphasize the unity within a species rather than the separateness of different species.
- The morphological species concept defines a species by structural features.
- It applies to sexual and asexual species but relies on subjective criteria.

- The ecological species concept views a species in terms of its ecological niche.
- It applies to sexual and asexual species and emphasizes the role of disruptive selection.
- The phylogenetic species concept: defines a species as the smallest group of individuals on a phylogenetic tree.
- ➤ It applies to sexual and asexual species, but it can be difficult to determine the degree of difference required for separate species.

Concept 24.2: Speciation can take place with or without geographic separation

- Speciation can occur in two ways:
 - Allopatric speciation: geographic barrier separates populations.
 - Sympatric speciation: no geographic barrier

Speciation

(b) Sympatric speciation

Allopatric ("Other Country") Speciation

- In allopatric speciation, gene flow is interrupted or macroevolution is the cumulative effect of many speciation and extinction events.
- reduced when a population is divided into geographically isolated subpopulations ... A geographic barrier separates the original population.
- Separate populations may evolve independently through mutation, natural selection, and genetic drift.
- Reproductive isolation between populations generally increases as the distance between them increases.
- Barriers to reproduction are intrinsic; separation itself is not a biological barrier.

Allopatric Speciation

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Sympatric ("Same Country") Speciation

- In sympatric speciation, speciation takes place in geographically overlapping populations.
- Polyploidy is the presence of extra sets of chromosomes due to accidents during cell division.
- An autopolyploid is an individual with more than two chromosome sets, derived from one species.
- An allopolyploid is a species with multiple sets of chromosomes derived from different species.
- Polyploidy is common in plants. Many important crops (oats, cotton, potatoes, tobacco, and wheat) are polyploids.

Sympatric Speciation via Polyploidy is Common in Plants

Failure of cell division after chromosome duplication gives rise to tetraploid tissue.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Gametes produced are diploid.

Offspring with tetraploid karyotypes may be viable and fertile.

Sympatric Speciation - Polyploidy --> Allopolyploid

Sympatric Speciation: Habitat Differentiation and Sexual Selection

- Sympatric speciation can also result from the appearance of new ecological niches.
- For example, the North American maggot fly can live on native hawthorn trees as well as more recently introduced apple trees.
- Sexual selection can drive sympatric speciation.
- Sexual selection for mates of different colors has likely contributed to the speciation in cichlid fish in Lake Victoria.

Allopatric and Sympatric Speciation May Cause Reproductive Isolation: *A Review*

- In allopatric speciation, geographic separation restricts gene flow between populations.
- Reproductive isolation may then arise by natural selection, genetic drift, or sexual selection in the isolated populations.
- Even if contact is restored between populations, interbreeding is prevented.
- In sympatric speciation, a reproductive barrier isolates a subset of a population without geographic separation from the parent species.
- Sympatric speciation can result from polyploidy, natural selection, or sexual selection.

Concept 24.3: Hybrid zones provide opportunities to study factors that cause reproductive isolation

- A hybrid zone is a region in which members of different species mate and produce hybrids.
- A hybrid zone can occur in a single band where adjacent species meet.
- Hybrids often have reduced fitness compared with parent species.
- The distribution of hybrid zones can be more complex if parent species are found in multiple habitats within the same region.

Hybrid Zones

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Hybrid Zones over Time

- When closely related species meet in a hybrid zone, there are three possible outcomes:
 - Reinforcement -- Strengthening of reproductive barriers reducing gene flow.
 - Fusion -- Weakening of reproductive barriers with eventual fusion into one species.
 - Stabilizing -- Continued formation of hybrid individuals.

Hybrid Zones Over Time

Possible outcomes:

Reinforcement of gene flow barrier.

OR

Fusion into one species.

OR

Stability:

Continued formation of hybrid individuals.

The Time Course of Speciation

- Broad patterns in speciation can be studied using the fossil record, morphological data, or molecular data.
- The fossil record includes examples of species that appear suddenly, persist essentially unchanged for some time, and then apparently disappear
- Niles Eldredge and Stephen Jay Gould coined the term punctuated equilibrium to describe periods of apparent stasis (no change) punctuated by brief periods of rapid change.
- The punctuated equilibrium model contrasts with a Darwinian model of gradualism: slow continuous change over time in a species' existence.

Patterns in Speciation

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Studying the Genetics of Speciation

- The explosion of genomics is enabling researchers to identify specific genes involved in some cases of speciation.
- Depending on the species in question, speciation might require the change of only a single allele or many alleles.

From Speciation to Macroevolution:

 Macroevolution is the cumulative effect of many speciation and extinction events.

Speciation

Original population

Review

Allopatric speciation

Sympatric speciation

Speciation

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

You should now be able to:

- Define and discuss the limitations of the four species concepts.
- 2. Describe and provide examples of prezygotic and postzygotic reproductive barriers.
- 3. Distinguish between and provide examples of allopatric and sympatric speciation.
- 4. Explain how polyploidy can cause reproductive isolation.
- 5. Define the term hybrid zone and describe three outcomes for hybrid zones over time.