Muscle Physiology

Muscular System Functions

- Body movement
- Maintenance of posture
- Respiration
- Production of body heat
- Constriction of organs and vessels
- Heart beat

Properties of Muscle

- Contractility
 - Ability of a muscle to shorten with force
- Excitability
 - Capacity of muscle to respond to a stimulus
- Extensibility
 - Muscle can be stretched to its normal resting length and beyond to a limited degree
- Elasticity
 - Ability of muscle to recoil to original resting length after stretched

Characteristics of Muscles

- Muscle cells are elongated (muscle cell = muscle fiber)
- Contraction of muscles is due to the movement of microfilaments
- Muscles are responsible for all types of body movement
- Three basic muscle types are found in the body
 - Skeletal muscle
 - Cardiac muscle
 - Smooth muscle

1- Skeletal Characteristics

- Attached to bones
- Nuclei multiple and peripherally located
- Striated,
 Voluntary and involuntary (reflexes)

2- Smooth Muscle Characteristics

- Walls of hollow organs, blood vessels, eye, glands, skin
- Single nucleus centrally located
- Not striated
- Involuntary
- In visceral smooth

peristaltic movement by smooth M.

3- Cardiac Muscle Characteristics

- Heart
- Single nucleus centrally
- Striations
- Involuntary
- Intercalated disks

Microscopic Anatomy of Skeletal Muscle

- Cells are multinucleate
- Nuclei are just beneath the sarcolemma
- Sarcolemma–specialized plasma membrane

Properties of Skeletal Muscle Activity

- Irritability ability to receive and respond to a stimulus
- Contractility ability to shorten when an adequate stimulus is received

Sacromere of Skeletal Muscle

- A sarcomere is the basic unit of <u>striated</u> <u>muscle tissue</u>. are composed of <u>muscle</u> <u>fibers</u>, called <u>myocytes</u>
- The Muscle fibers are composed of tubular <u>myofibrils</u> which appear under the microscope as dark and light bands.

Sarcomeres composed

1- Myosin protein

- which forms the thick filament, has a long, fibrous tail and a globular head. The Myosin can only bind to actin when the binding sites on actin are exposed by calcium ions.
- 2- Actin protein which forms the thin filament.
- 3- Tropomyosin complex (4 types protein).
- Myosin & Actin molecules are bound to the Z line (Zwischenscheibe), which forms the borders of the sarcomere. The thin M-line (Mittelscheibe), the disc in the *middle* of the sarcomere) formed of crossconnecting elements of the cytoskeleton.

Sacromere of Skeletal Muscle

Types of Muscle Contractions

- Isotonic contractions
 - Myofilaments are able to slide past each other during contractions
- Isometric contractions
 - Tension in the muscles increases
 - The muscle is unable to shorten

Muscle is Stimulated by Nerve

- Skeletal muscles must be stimulated by a nerve to contract
- Motor unit
 - One neuron
 - Muscle cells stimulated by that neuron

Transmission of Nerve Impulse

- Neurotransmitter a chemical released by the nerve upon arrival of nerve impulse
 - The neurotransmitter acetylcholine
- Neurotransmitter attaches to receptors on the sarcolemma
- Sarcolemma becomes permeable to sodium (Na+)
- Sodium enters the cell and generates an action potential
- Once started, muscle contraction cannot be stopped

The Sliding Filament Theory of Muscle Contraction

- This action causes the myosin to slide along the actin
- The result is shortening of the muscle – a contraction

Muscle Response to Strong Stimuli

- Muscle force depends upon the number of fibers that are stimulated
- More fibers contracting results in greater muscle tension
- Muscles can continue to contract unless they run out of energy

Energy for Muscle Contraction

- Aerobic Respiration (Cellular respiration)
 - Series of metabolic pathways that occur in the mitochondria
 - Glucose is broken down to carbon dioxide and water, releasing energy
 - This is a slower reaction that requires continuous oxygen

Energy for Muscle Contraction

- Anaerobic glycolysis
 - Reaction that breaks down glucose without oxygen
 - Glucose is broken down to pyruvic acid to produce some ATP
 - Pyruvic acid is converted to lactic acid

Muscle Fatigue and Oxygen Debt

- When a muscle is fatigued, it is unable to contract
- The common reason for muscle fatigue is oxygen debt
 - Oxygen must be placed
 - Oxygen is required to rid of accumulated lactic acid
- Increase acidity (from lactic acid) and lack of ATP causes the muscle to contract less